
www.manaraa.com

University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2007

The Creation of Cargo Scanner Software to Improve the Container The Creation of Cargo Scanner Software to Improve the Container

Packing Process Packing Process

Jonathan Adams
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Adams, Jonathan, "The Creation of Cargo Scanner Software to Improve the Container Packing Process"
(2007). Graduate Student Theses, Dissertations, & Professional Papers. 973.
https://scholarworks.umt.edu/etd/973

This Professional Paper is brought to you for free and open access by the Graduate School at ScholarWorks at
University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional
Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please
contact scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F973&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/973?utm_source=scholarworks.umt.edu%2Fetd%2F973&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

www.manaraa.com

THE CREATION OF CARGO SCANNER SOFTWARE TO IMPROVE THE

CONTAINER PACKING PROCESS

By

Jonathan Berkey Adams

B.S., Liberty University, Lynchburg, Virginia, 2005

Professional Paper

presented in partial fulfillment of the requirements

for the degree of

Master of Science

in Computer Science

The University of Montana

Missoula, MT

Spring 2007

Approved by:

Dr. David A. Strobel, Dean

Graduate School

Dr. Joel E. Henry, Chair

Department of Computer Science

Dr. Yolanda Jacobs Reimer

Department of Computer Science

Dr. George McRae

Department of Mathematical Sciences

www.manaraa.com

 ii

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS iv

CHAPTER 1 THE NEED FOR A SOFTWARE SOLUTION 1

Introduction... 1

The Container Packing Problem.. 1

Background.. 2

The Problem... 3

The Solution... 4

CHAPTER 2 SOFTWARE REQUIREMENTS 7

Container Selection... 7

Scanning Cargo Items.. 10

The Packing Process... 15

CHAPTER 3 SOFTWARE DESIGN 26

Overview.. 26

The frmContainerType Form.. 28

The frmMain Form... 30

The frmCargoManifest Form.. 34

The XMLReader Class... 37

The XMLWriter Class.. 39

CHAPTER 4 IMPLEMENTATION 41

CHAPTER 5 SOFTWARE TESTING 43

CHAPTER 6 SOFTWARE DEPLOYMENT 46

www.manaraa.com

 iii

CHAPTER 7 PROJECT ASSESSMENT 47

Assessment... 47

Future Direction.. 48

REFERENCES 52

APPENDIX A 53

APPENDIX B 54

www.manaraa.com

 iv

LIST OF ILLUSTRATIONS

Figure 1.1 Solution Process... 6

Figure 2.1 Container Selection Window... 7

Figure 2.2 Container Selection Error... 8

Figure 2.3 Selecting Containers... 9

Figure 2.4 Completed Container Selection.. 9

Figure 2.5 Main Window.. 11

Figure 2.6 Scanned Cargo…... 11

Figure 2.7 Cargo Item Not Found... 12

Figure 2.8 Removing Cargo.. 13

Figure 2.9 Clearing the List.. 14

Figure 2.10 Clear List Warning.. 14

Figure 2.11 Server Connection Error.. 16

Figure 2.12 Manifest Window.. 19

Figure 2.13 Side Scrolling the Manifest Window.. 20

Figure 2.14 Sorting the Manifest List... 21

Figure 2.15 Removing Item from Manifest List... 22

Figure 2.16 Exit Cargo Scanner.. 23

Figure 2.17 Packing Process (Part 1).. 24

Figure 2.18 Packing Process (Part 2).. 25

Figure 3.1 Class Interaction.. 27

Figure 3.2 The frmContainerType Form.. 28

Figure 3.3 The frmMain Form.. 30

Figure 3.4 The frmCargoManifest Form.. 34

Figure 3.5 The XMLReader Class.. 37

Figure 3.6 The XMLWriter Class... 39

www.manaraa.com

 1

CHAPTER 1

THE NEED FOR A SOFTWARE SOLUTION

Introduction

 This paper will cover the work performed to create computer software that will

help simplify the current packing process employed when using the Container Packer

software created by Dr. Joel Henry of the University of Montana. This paper is

organized as follows: Introduction to the container packing problem, Overview and

background of the Container Packer software, and the problem solved. Since a majority

of the work consisted of writing computer software, the software will be covered in great

detail. First, the requirements for the software will be discussed, followed by the design,

implementation, testing, and deployment of the software. The paper will conclude with

an assessment of the work and future directions or enhancements that may be made to the

software.

The Container Packing Problem

 A common problem in computer science that many people try to solve is the

Container Packing Problem. In this problem, N cargo items must be packed into a

container type. A container has a weight limit and this weight limit cannot be exceeded.

Each cargo item has a length, width, height, and weight. No item within a container may

overlap the space occupied by another.

 The optimal solution to this problem would be a packing order of the cargo items

that results in the minimal number of containers of a single type being used. To find this

optimal packing order, all possible combinations of cargo items must be attempted in a

www.manaraa.com

 2

container. This means that N! packing combinations will be tested. This is known to be

an NP-Hard problem. The problem can not be solved in polynomial time and as the

problem size (N) increases, the time to solve the problem will increase by some

exponential function of the size.

Background

 Several years ago, Dr. Joel Henry was tasked under a research and development

contract with Development, Planning, Research, and Analysis (DPRA) to create a

computer program that, when given a list of cargo items and a list of containers, would

approximate the number of containers required to pack the items and determine a packing

order for the cargo items.

 The Container Packer program accepts two files as input. One is a list of cargo

items to be packed. Each cargo item has a Unit ID (a way of grouping the cargo items

that should be packed together), Cargo ID (allows each cargo item to be uniquely

identified), length, width, height, and weight. The other file is a list of all the different

types of containers into which the cargo items may be packed. Each container in the list

has a name, type, a Boolean value indicating if there is a maximum packing height, a

Boolean value indicating if there is a maximum packing length, dimensions of the

container in both metric and imperial measurement units, and a maximum weight that it

can hold.

 The program then runs a packing algorithm using the input files to determine a

packing order. Since this problem is considered to be NP-Hard, the program uses

heuristics to approximate the best solution. First, all the cargo data is stored in data

www.manaraa.com

 3

objects. The cargo information is only stored one time. The cargo objects are then

separated into groups based on the Unit ID and organized by length, width, and height.

 The cargo items are then packed into containers using a best-fit algorithm.

Packing always begins at the back, left, bottom corner of an empty container. Initially,

there is only one space to pack, the entire container. As items are placed in a container,

new spaces are created beside, in front of, and on top of cargo items. The largest empty

space within a container is always packed first. The cargo item consuming the largest

volume within that space is then packed. No backtracking is used in this algorithm. This

means cargo items are only packed once. They are never removed to find a more

efficient packing scheme. Not all cargo items are considered for each space to be packed.

Only items that will fit in the space are taken into account. This increases the speed of

the algorithm execution. Because of the complex data structures that are used to store

cargo and space data, the algorithm maintains a O(1) retrieval of any cargo or free space

data, regardless of the number of items being packed. The algorithm also packs

containers to their maximum weight limit 95% of the time.

 Once a cargo item has been successfully packed into a container, the container

number and the position that the cargo item is to be placed within the container is stored.

After all cargo items have been packed, each cargo item along with its container number

and position data is written to an output file. Then a list of the containers to be packed

along with the container size and weight after packing is written to a file. These two files

are used to perform the physical packing of the cargo.

The Problem

When used commercially, the current packing process requires several steps.

www.manaraa.com

 4

First, a person creates an XML file of each cargo item to be packed. This file contains

each cargo item’s Unit ID, Cargo ID, length, width, height, and weight. This list is

created through keyboard entry. Then, a second XML file is created that contains a list of

the containers, which may be used to pack each item. This list is also created through

keyboard entry. The person that created the lists then runs the Container Packer software.

The Container Packer creates a final XML packing list that contains the cargo items and

the containers that each item will be packed into. The computer that runs the Cargo

Packer software resides in a different location than where the physical packing takes

place, so the list must be printed out and given to the person who actually places each

item in the containers.

Problems are encountered when this program is used in the real world: the data

entry process is tedious and time consuming and two people who work in different

locations are required to complete the process.

The Solution

The purpose of this project is to streamline the current packing process. This can

be done by allowing a single person to create the packing list, run the program, view the

final packing list, and physically pack the cargo items all from a single location. This can

be done by providing the physical packer with a handheld computing device, such as a

PocketPC, that has both barcode scanning and wireless LAN technology.

For this project, software was created to run on a PocketPC with barcode scanning

and wireless LAN technology. This software allows a single person to scan cargo items

with the PocketPC. When the items are scanned, an XML list of the cargo items is

created. The software will also allow this list to be wirelessly transmitted to a server,

www.manaraa.com

 5

which runs the software that performs the packing algorithm. The PocketPC software

will wait for the final packing list to be sent back from the server. Upon receiving the

final packing list, the PocketPC will then display the final packing list so that physical

packing may begin.

The new packing process will require fewer steps. First, each cargo item will

have a barcode placed on it. The physical packer will use the PocketPC to scan each

cargo item in order to create the packing list. Then, the packer will also select from a list

the container type in which to pack the items into. Upon completion of these tasks, the

PocketPC will then wirelessly transmit the packing list to a central server which runs the

software that performs the packing algorithm. The server will then transmit the final

packing list back to the PocketPC so that the physical packer may view the list and begin

packing each cargo item in the containers. Figure 1.1 displays this process.

www.manaraa.com

 6

Figure 1.1 - Solution Process

www.manaraa.com

 7

CHAPTER 2

SOFTWARE REQUIREMENTS

Container Selection

 When the user launches the Cargo Scanner program, they are presented with the

Container Selection window (Figure 2.1). This window allows the user to select the type

of container in which to pack the cargo items into and the units of measurement that will

be used. The window will not allow the user to advance unless the container type and

measurement units have been selected (Figure 2.2).

Figure 2.1 - Container Selection Window

www.manaraa.com

 8

Figure 2.2 - Container Selection Error

 The drop-down list contains all the different types of containers that may be

selected for packing. Only one container type may be selected at a time. This list is a

static list. If a new container type is to be added, the code must be edited appropriately,

recompiled, and reinstalled on the PocketPC.

 The measurement type is selected by pressing on the appropriate radio button.

When the window is first loaded, Imperial is selected by default. Only one measurement

type can be selected at a time. If Imperial is currently the selected measurement type and

the user presses on the radio button for Metric, Imperial is deselected and Metric

becomes the newly selected measurement type.

 When the arrow of the container drop-down list is pressed, the user is presented

with the entire list of available containers (Figure 2.3). Then, the user may select one of

the containers from the list for packing (Figure 2.4). Once a container type has been

www.manaraa.com

 9

selected, the user may change the measurement type or press the “Begin Scanning”

button.

Figure 2.3 - Selecting Containers

Figure 2.4 - Completed Container Selection

www.manaraa.com

 10

Scanning Cargo Items

 After the user presses the “Begin Scanning” button on the Container Selection

window, the container type and measurement units are saved, the Main window for the

Cargo Scanner is opened (Figure 2.5) and the barcode scanner is enabled. When the

barcode scanner is enabled, the barcode scanner laser can be used to scan cargo items.

The barcode scanner laser is turned on by holding down either of the yellow, rubber

buttons on the sides of the PocketPC.

 The barcode scanner laser will shut off under one of three conditions: an item was

scanned, the button was held down for more than three seconds, or the user released the

button.

 In order to begin creating a list of cargo items for packing, all cargo items must

have barcodes that contain the unique Cargo ID of that particular cargo item. There must

also be an XML file on the PocketPC that contains a list of all the cargo items and the

physical properties of the cargo items. This is the Cargo Lookup file. See Appendix A

for a sample of this file.

When a cargo item is scanned, the Cargo ID of that cargo item is stored. The

Cargo Lookup file is opened and a sequential search for the scanned item is performed

using the Cargo ID. When the cargo item is found in the list, its length, width, height,

and maximum weight are extracted from the file and loaded into a data structure that is

displayed in the Main window (Figure 2.6).

www.manaraa.com

 11

Figure 2.5 - Main Window

Figure 2.6 - Scanned Cargo

 The status message at the bottom of the list is updated if a Cargo ID is not found

in the Cargo Lookup file. The updated message informs the user that the cargo item does

not exist in the Cargo Lookup file (Figure 2.7).

www.manaraa.com

 12

Figure 2.7 - Cargo Item Not Found

 Cargo items may be deleted from the list at any time. In order to delete a

particular cargo item from the list, the user may press on any cell within the row of the

desired item to delete. Upon pressing, a context menu appears with the menu item Delete

Cargo Item (Figure 2.8). When this menu item is selected, the selected cargo item will

be deleted from the list.

www.manaraa.com

 13

Figure 2.8 - Removing Cargo

 The entire list of cargo items may be deleted at any time by selecting Actions

from the main menu, and then selecting Clear List (Figure 2.9). If Clear List is

selected from the Actions menu, a dialog box is displayed with a warning message giving

the user a chance to cancel this action (Figure 2.10). If the user selects No, the action is

cancelled and the user can continue scanning cargo. If Yes is selected, all cargo items in

the list are deleted, the Main window is refreshed with a blank list, and the barcode

scanner is enabled.

www.manaraa.com

 14

Figure 2.9 - Clearing the List

Figure 2.10 - Clear List Warning

 The barcode scanner may be disabled at any time during the scanning process by

pressing the Stop Scanning button. When the user presses this button, the barcode

scanner is disabled and any memory or data structures associated with it are released.

Also, the text on the button changes to “Start Scanning.” Disabling the barcode scanner

turns off the ability to activate the barcode scanner laser. When disabled, pressing the

yellow, rubber buttons on either side of the PocketPC does nothing.

www.manaraa.com

 15

 The barcode scanner can be enabled again by pressing what is now the Start

Scanning button. This activates the barcode scanner and allocates any resources that are

required by the barcode scanner hardware.

 Once all the desired cargo items have been scanned and added to the list, packing

can begin by either pressing the Pack Cargo button or selecting Pack from the Actions

menu (Figure 2.9).

The Packing Process

 There are several steps to the packing process. Since the Container Packer

software requires significant memory and processing power, it cannot run efficiently on a

PocketPC. The Container Packer software runs on a server connected to a wireless

router. So, the first step of the packing process for the PocketPC is to establish a

connection with server. The connection is established using a Transmission Control

Protocol (TCP) Socket. A connection cannot be made unless the server is ready.

Geddy Tarbell, another student working on an independent study, created a

Windows Service which runs on the server that acts as an intermediary between the

PocketPC and the Container Packer software. A Windows Service is a program that runs

in the background of the computer as long as it is turned on. The Container Packer

Service or CPS, when first started, creates a socket that will accept connections from any

IP address on port 48888. The CPS performs a blocking wait which means program

execution stops until a connection attempt is made on port 48888.

When the user presses the Pack Cargo button, a socket is created and attempts to

make a connection to the server. If a connection was successfully established, the Cargo

Scanner moves on to the next step of the packing process. If a connection with the server

www.manaraa.com

 16

could not be made, then an error message is displayed and control of the program

execution is returned to the Main window (Figure 2.11).

Figure 2.11 - Server Connection Error

The second step of the packing process is to create a cargo item XML file

containing the container type, measurement units, and all the scanned cargo items with

their physical properties. This XML file follows the specifications defined by Henry

(Henry, 4). First, the XML header is written to the file. Then, the container type and

measurement units are added. Next, each scanned cargo item is taken from the list and

each item’s Cargo ID, length, width, height, and weight are added to the file. Once all of

the cargo items have been written to the XML file, the closing XML tags are inserted and

the file is closed. A sample cargo item file can be viewed in Appendix B.

 The third step is to transfer the cargo item file from the PocketPC to the CPS on

the server. To perform this, the Cargo Scanner reads through the cargo item file line by

line and places each line into an array of strings. This array grows as needed. Initially,

the array can hold 20 string objects. When the array becomes full, a function is called

that increases the capacity of the array by another 20 elements.

 After the file has been completely stored in the array, the PocketPC then breaks

the array into bytes and begins transmitting the bytes through the TCP socket that was

created in Step 1. Since TCP is the underlying protocol for network communication, if

www.manaraa.com

 17

any data gets lost or corrupted during transmission, the data is retransmitted as needed

without any extra programming. Once the entire array has been broken into bytes and

successfully transmitted across the network to the server, the PocketPC completes the

transmission by sending an “end of file message”. This message lets the CPS on the

server know that it has received the entire file and may begin using that file with the

Container Packer software. The Cargo Scanner then begins waiting for the CPS to

perform the packing and send back two files.

 Step four consists of the CPS running the Container Packer software using the

aforementioned cargo item file. This results in the creation of two files on the server, a

Cargo Manifest file and a Container Manifest file. The Cargo Manifest contains each

cargo item, the container number that that item will be packed in, the X, Y, and Z

coordinates within the container that the back, left corner of the item will be placed, and

packing index of that item. The packing index is the order in which items should be

placed into a container.

 The Container Manifest contains information for all of the containers required to

pack all of the items from the Cargo Manifest file. This file contains the following

information for each container: container name, container number, packed weight of the

container, height of the container if it has an open top, length of the container if it has

open sides, and the width of the container.

 In step 5, the CPS sends both the Cargo Manifest and the Container Manifest to

the Cargo Scanner. Since the Cargo Scanner still has an open network connection with

the CPS and is ready to accept files, the CPS can immediately begin file transmission.

The Cargo Manifest file is broken into an array of strings, each element in the array is

www.manaraa.com

 18

broken into bytes, and the bytes are placed in data packets and transmitted across the

network. After it has completed sending the file, it sends an end of file message to the

Cargo Scanner and begins sending the Container Manifest in the same fashion it sent the

Cargo Manifest. When it finishes sending the Container Manifest, it sends another end of

file message.

 Once the Cargo Scanner begins receiving the packets from the CPS, it begins

reassembling the Cargo Manifest file. This is a delicate task. Each packet may contain

multiple lines or only pieces of a line of the file. This is extremely difficult to detect. In

order to maintain the original format of the file, the data from the incoming packets is

stored as one large string. As an incoming packet is received, the data from that packet is

added to the string. This can result in string objects consisting of thousands of characters.

 The Cargo Scanner checks for the end of file message in every packet. When it

finds the end of file message, it adds any preceding file data to the current string, and

writes the entire string to the Cargo Manifest file. The end of file message may also

contain some data for the Container Manifest file. If this is the case, that data is stored in

a new string that is specifically for the Container Manifest. Since the end of file message

was received, all of the incoming data will now be strictly for the Container Manifest.

The Container Manifest file is created using the same methodology as the Cargo

Manifest. Every incoming packet is checked for the end of file message. If the message

is encountered, the string is written to the Container Manifest file. After the end of file

message has been received by the Cargo Scanner, no other communication between the

PocketPC and the server is necessary so the socket is closed. The Cargo Scanner

www.manaraa.com

 19

proceeds to step 6 and the CPS goes back to a state where it waits for an incoming

connection.

 Even though the Cargo Scanner receives the Container Manifest file from the

CPS, it never uses the file. This file is sent to the Cargo Scanner so it is there for use if

the Cargo Scanner software is expanded.

 In step 6, the Cargo Scanner opens the Manifest window and begins reading the

Cargo Manifest file. Each cargo item is stored in a data object. Each object contains all

the cargo items properties that were specified in Step 4. After all the cargo items have

been stored in objects, a list in the Manifest window is populated with each object

(Figure 2.12). A diagram of the entire packing process is provided in Figure 2.17 and

Figure 2.18.

Figure 2.12 - Manifest Window

www.manaraa.com

 20

 Due to the width of the columns, the list is wide and the horizontal scrolling

arrows must be used to view the entire contents of the list (Figure 2.13). The size of the

columns may be changed during program execution. To change the size of any column,

the user may press and hold the column header border and drag it to the desired location.

If more items exist than can be viewed on the screen, vertical scrolling arrows are added

so that the other items may be seen.

Figure 2.13 - Side Scrolling the Manifest Window

 By default the items in the list are ordered by packing index. The list may be

sorted based on any property of the cargo items. To sort the manifest list, the user may

press on the Actions menu item and then choose Sort by…. A list of all the available

sorting options will be displayed. The user can then press the desired sorting property

and the list will then update with the appropriate sorting (Figure 2.14).

www.manaraa.com

 21

Figure 2.14 - Sorting the Manifest List

 As items are packed into their appropriate containers, they can be quickly

removed from the manifest list. To remove a cargo item from the manifest list, the user

may just press any cell within the row of the desired item to remove and a context menu

will appear. This menu provides the option to remove the item. Once the user presses on

Delete Cargo Item (Figure 2.15), that cargo item is removed from the list and the user

may continue packing the next item.

www.manaraa.com

 22

Figure 2.15 - Removing Item from Manifest List

 When all items have been packed into the appropriate containers, the user may

either exit the Cargo Scanner software or begin packing new containers. To pack a new

container, the user may click on the Close button on the Manifest window. This will

close the current manifest window and any cargo items remaining in the list will be lost.

A new Container Selection window will then be opened and the user may proceed with

the container and measurement unit selection.

To exit the Cargo Scanner software, the user may press the File menu option and

then select Exit. The program can be shut down in this manner from any window within

the Cargo Scanner software (Figure 2.16).

www.manaraa.com

 23

Figure 2.16 - Exit Cargo Scanner

www.manaraa.com

 24

Figure 2.17 - Packing Process (Part 1)

www.manaraa.com

 25

CPS sends an end of file

message to Cargo

Scanner

CPS sends the Container

Manifest to Cargo

Scanner

CPS sends end of file

message to Cargo

Scanner

CPS closes

connection and

deallocates network

resources

Cargo Scanner

deallocates network

resources

CPS runs Container

Packer software and

produces Cargo Manifest

and Container Manifest

files

CPS sends the Cargo

Manifest to Cargo

Scanner

Cargo Scanner

copies Cargo

Manifest

Cargo Scanner

copies Container

Manifest

Figure 2.18 - Packing Process (Part 2)

www.manaraa.com

 26

CHAPTER 3

SOFTWARE DESIGN

Overview

 The design of the Cargo Scanner is very simple. A total of three forms and two

classes were created to carry out the cargo scanning process. Figure 3.1 displays the

interactions between the forms and classes. When the user starts the Cargo Scanner

software, the frmContainerType form is displayed. See Figure 3.2 for a list of properties

and methods for this form. After the user finishes entering the container type and

measurement units, the frmMain form (Figure 3.3) is instantiated. This form has two

properties: strContainerType and strMeasurementType. These two properties are set by

the frmContainerType when the frmMain is instantiated. This is done because the

frmMain form must know the container type and measurement units so that it may be

written to an XML file. From the frmMain form, the user scans the appropriate cargo

items. Every time an item is scanned, frmMain instantiates the XMLReader class

(Figure 3.5) in order to find the cargo item data in the Cargo Lookup XML file.

Once the user is ready to pack the cargo items, the XMLWriter class (Figure 3.6)

is instantiated. This class is used to write the container type, measurement units, and all

cargo items to an XML file. After the XML file has been created, frmMain makes a

connection with the CPS running on the server and sends the XML file to it. It then waits

for the manifest files to be sent back.

Once frmMain receives the Cargo Manifest and Container Manifest files from the

CPS, the frmCargoManifest form (Figure 3.4) is instantiated and loaded. This form

handles the display of the manifest files. When the form loads, it opens the Cargo

www.manaraa.com

 27

Manifest file and begins reading each cargo item into a data object. After the cargo items

are loaded into a data object, they are then displayed on the frmCargoManifest form.

The software design is based on knowledge of the desired logical packing

process. Only two classes were used because there are only two points within the

software execution that the data is operated upon: when it is being read from a file and

when it is being written to a file. The XMLReader and XMLWriter classes handle these

two operations.

The three forms are designed to handle the three different sets of data. The forms,

frmContainerType and frmMain handle the input of data. The frmContainerType form

handles the input of the container type and measurement units while the frmMain form

handles the input of cargo items. The frmCargoManifest form is designed to handle the

display of the resulting Cargo Manifest file.

Figure 3.1 - Class Interaction

www.manaraa.com

 28

The frmContainerType Form

-Main()

-frmContainerType_Load(in sender : object, in e : EventArgs)

-rbMetric_CheckedChanged(in sender : object, in e : EventArgs)

-rbImperial_CheckedChanged(in sender : object, in e : EventArgs)

-mmuExit_Click(in sender : object, in e : EventArgs)

-btnReturnToMain_Click(in sender : object, in e : EventArgs)

-cmbContainerType : ComboBox

-rbImperial : RadioButton

-rbMetric : RadioButton

-btnReturnToMain : Button

-mmuMain : MainMenu

-mmuFile : MenuItem

-mmuExit : MenuItem

-lblInstructions1 : Label

-lblInstructions2 : Label

-blnImperialChecked : bool = true

frmContainerType

Figure 3.2 – The frmContainerType Form

(See Figure 2.1 for a screenshot of this form)

 The frmContainerType form has six methods that are used during program

execution. The Main method is the main entry point of the Cargo Scanner software and it

makes certain that the frmContainerType form is displayed.

The frmContainerType_Load method is automatically called when the

frmContainerType form is displayed. Currently, it does nothing. This is where code

would be inserted if the cmbContainerType ComboBox were to be a dynamic list.

 The rbMetric_CheckedChanged and rbImperial_CheckChanged methods are

called anytime one of the radio buttons on the frmContainerType form is selected. These

methods make certain only one measurement unit (radio button) is selected at a time.

 The mmuExit_Click method handles the event of a user selecting the Exit option

from the File menu. This closes any open forms and ensures the scanner is turned off.

www.manaraa.com

 29

 The btnReturnToMain_Click method is called when the user clicks the Begin

Scanning button on this form. It creates an instance of the frmMain form and sets the

strContainerType and strMeasurementType properties of frmMain. Once these properties

have been set, the frmMain form is displayed.

www.manaraa.com

 30

The frmMain Form

-frmMain_Load(in sender : object, in e : EventArgs)

-btnPack_Click(in sender : object, in e : EventArgs)

-btnScan_Click(in sender : object, in e : EventArgs)

-bcrBarcodeReader_ListChanged(in sender : object, in e : ListChangedEventArgs)

-mmuExit_Click(in sender : object, in e : EventArgs)

-mmuPack_Click(in sender : object, in e : EventArgs)

-mmuClearList_Click(in sender : object, in e : EventArgs)

-dgScannedCargo_Click(in sender : object, in e : EventArgs)

-miDeleteCargoItem_Click(in sender : object, in e : EventArgs)

-BeginPacking()

+CreateCargoXMLFile(in strFileName : string)

+GetCargoData(in strCargoIDFromScanner : string)

+ConnectToServer() : bool

-SendFileToServer()

+WaitForFilesFromServer() : string[]

+ReadFile(in strFileName : string) : string[]

+EnlargeArray(in strarrCurrent : string[]) : string[]

-WriteToFile(in strFilename : string, in strData : string)

+SetMeasurementType(in strMeasurement : string)

+GetMeasurementType() : string

+SetContainerType(in strContainer : string)

+GetContainerType() : string

-btnPack : Button

-btnScan : Button

+lblMessage : Label

-mmuMain : MainMenu

-mmuFile : MenuItem

-mmuExit : MenuItem

-mmuActions : MenuItem

-mmuPack : MenuItem

-mmuClearList : MenuItem

-cmDataGridClick : ContextMenu

-miDeleteCargoItem : MenuItem

-ofdOpen : OpenFileDialog

-sfdSave : SaveFileDialog

-dgScannedCargo : DataGrid

-bcrBarcodeReader : BarcodeReader

-END_CARGO_FILE : string = "END_CARGO_FILE"

-END_CONTAINER_FILE : string = "END_CONTAINER_FILE"

-CARGO_FILE_FOR_SERVER : string = "CargoToPack.xml"

-PACKED_CARGO_FILE : string = "PackedCargo"

-PACKED_CONTAINER_FILE : string = "PackedContainer"

-FILE_PATH : string = Convert.ToString(@"\Program Files\WirelessCargoScanner_CS\")

-strMeasurementType : string

-strContainerType : string

-blnScanning : bool

-tcpcToServer : TcpClient = new TcpClient()

-dtScannedCargo : DataTable = new DataTable("ScannedCargo")

-dsScannedCargo : DataSet

frmMain

Figure 3.3 – The frmMain Form

(See Figure 2.6 for a screenshot of this form)

www.manaraa.com

 31

 The frmMain form is the workhorse of the Cargo Scanner software and therefore

has many methods. The frmMain_Load method is called when the frmMain form is first

displayed. It ensures the barcode scanner is turned on and it sets up the datagrid to begin

displaying the scanned cargo items.

 The btnPack_Click method is called when the user presses the Pack Cargo

button. This method calls the BeginPacking sub procedure as long as at least one cargo

item has been scanned.

 The btnScan_Click method is called when the user presses the Stop Scanning

button. This method turns off the barcode scanner and changes the button’s label to

“Begin Scanning.” If the button is pressed again, the barcode scanner is turned on and

the button’s label is changed back to “Stop Scanning.”

 The bcrBarcodeReader_ListChanged method is called anytime the barcode

scanner scans a barcode. This method calls the GetCargoData sub procedure using the

most recently scanned barcode as the lookup value.

 The mmuExit_Click method handles the event of a user selecting the Exit option

from the File menu. This closes any open forms and ensures the scanner is turned off.

 The mmuPack_Click method handles the event of a user selecting the Pack

option from the Actions menu. This method calls the BeginPacking sub procedure.

 The mmuClearList_Click method is executed when a user selects Clear List from

the Actions menu. The method deletes all of the scanned cargo items from the datagrid.

www.manaraa.com

 32

 The dgScannedCargo_Click method handles the event of the user selecting one of

the scanned cargo items in the datagrid. This method displays the context menu so that

the user may delete the currently selected cargo item.

 The miDeleteCargoItem_Click method is called when a user selects Delete Cargo

Item from the context menu that is displayed by dgScannedCargo_Click. This method

deletes the currently selected cargo item from the scanned cargo list.

 The BeginPacking sub procedure starts the packing process that is displayed in

Figure 17. This sub procedure calls the CreateCargoXMLFile and ConnectToServer sub

procedures. If a connection to the server is successfully created, then it also calls the

SendFileToServer and WaitForFilesFromServer sub procedures. Once the

WaitForFilesFromServer sub procedure finishes executing, BeginPacking sets the

strPackedCargoFile and strPackedContainerFile properties on the frmCargoManifest

form and displays it.

 The CreateCargoXMLFile sub procedure instantiates the XMLWriter class and

uses the XMLWriter methods that are necessary to create the XML file needed by the

server.

 The GetCargoData sub procedure takes a cargo ID provided to it by the barcode

scanner and uses the XMLReader class to look up that cargo ID in an XML file, which

contains a list of all the cargo items that may be scanned and their respective attributes.

Once it finds the cargo item in the lookup file, it places that information in the datagrid.

 The ConnectToServer function attempts to establish a TCP Socket connection

with a server running the CPS. If the connection is successful, the function returns a

Boolean true, otherwise it returns a Boolean false.

www.manaraa.com

 33

 The SendFileToServer sub procedure uses the TCP Socket to transmit the scanned

cargo file byte by byte. It calls the ReadFile sub procedure to place the file into an easy

to use format for transmission.

 The WaitForFilesFromServer function handles the reception of the manifest files

from the server. It stores the incoming data from the server in a string. Once the entire

file as been received, it calls the WriteToFile sub procedure. After successfully

reconstructing the both manifest files, it returns the names of both of the files.

 The ReadFile function takes a file and reads it into an array of strings. If the array

is not large enough to hold all the lines of the file, the EnlargeArray function is called.

Once the entire file has been written to the array, ReadFile returns the array of strings.

 The EnlargeArray function takes an existing array and adds 20 elements to the

end of it. After the new elements have been added, it returns the new array and it still

contains any data that was previously stored in it.

 The WriteToFile sub procedure takes a string of characters and writes them to the

specified file.

 The SetMeasurementType sub procedure allows the private strMeasurementType

property to be set.

 The GetMeasurementType function returns the value of the private

strMeasurementType property.

 The SetContainerType sub procedure allows the private strContainerType

property to be set.

 The GetContainerType function returns the value of the private strContainerType

property.

www.manaraa.com

 34

The frmCargoManifest Form

-frmCargoManifest_Load(in sender : object, in e : EventArgs)

-btnClose_Click(in sender : object, in e : EventArgs)

-mmuExit_Click(in sender : object, in e : EventArgs)

-mmuContainer_Click(in sender : object, in e : EventArgs)

-mmuIndex_Click(in sender : object, in e : EventArgs)

-mmuCargoID_Click(in sender : object, in e : EventArgs)

-mmuLength_Click(in sender : object, in e : EventArgs)

-mmuWidth_Click(in sender : object, in e : EventArgs)

-mmuHeight_Click(in sender : object, in e : EventArgs)

-mmuClearList_Click(in sender : object, in e : EventArgs)

-dgPackedCargo_Click(in sender : object, in e : EventArgs)

-miDeleteCargoItem_Click(in sender : object, in e : EventArgs)

-PopulateDataGrid()

+GetItemCount() : int

+GetCargoManifestFileName() : string

+SetCargoManifestFileName()

+GetContainerManifestFileName() : string

+SetContainerManifestFileName()

-dgPackedCargo : DataGrid

-btnClose : Button

-mmuMain : MainMenu

-mmuFile : MenuItem

-mmuExit : MenuItem

-mmuActions : MenuItem

-mmuClearList : MenuItem

-mmuSortBy : MenuItem

-mmuCargoID : MenuItem

-mmuLength : MenuItem

-mmuWidth : MenuItem

-mmuHeight : MenuItem

-mmuContainer : MenuItem

-mmuIndex : MenuItem

-cmPackedCargo : ContextMenu

-miDeleteCargoItem : MenuItem

-dtPackedCargo : DataTable = new DataTable("PackedCargo")

-dvCurrentView : DataView

-intItemCount : int

-strPackedCargoFile : string

-strPackedContainerFile : string

-FILE_PATH : string = Convert.ToString(@"\Program Files\WirelessCargoScanner_CS\")

frmCargoManifest

Figure 3.4 – The frmCargoManifest Form

(See Figure 2.12 for a screenshot of this form)

 The frmCargoManifest form handles the display of the Cargo Manifest file. The

frmCargoManifest_Load method is called when the form is first displayed. It prepares

www.manaraa.com

 35

the datagrid to display the packed cargo items. Once the datagrid is ready, the

PopulateDataGrid sub procedure is called.

 The btnClose_Click method is called when the user presses the Close button on

the form. This method closes the frmCargoManifest form and loads the

frmContainerType form so that a new cargo list may be created for packing.

 The mmuExit_Click method handles the event of a user selecting the Exit option

from the File menu. This closes any open forms and makes certain that the scanner is

turned off.

 The mmuContainer_Click method handles the event of a user selecting Container

from the Sort By… menu. This sorts the cargo items in the datagrid by their container in

descending order.

The mmuIndex_Click method handles the event of a user selecting Index from

the Sort By… menu. This sorts the cargo items in the datagrid by their packing index in

descending order.

 The mmuCargoID_Click method handles the event of a user selecting Cargo ID

from the Sort By… menu. This sorts the cargo items in the datagrid by their Cargo ID in

descending order.

 The mmuLength_Click method handles the event of a user selecting Length from

the Sort By… menu. This sorts the cargo items in the datagrid by their position length-

wise in the container in descending order.

 The mmuWidth_Click method handles the event of a user selecting Width from

the Sort By… menu. This sorts the cargo items in the datagrid by their position width-

wise in the container in descending order.

www.manaraa.com

 36

 The mmuHeight_Click method handles the event of a user selecting Height from

the Sort By… menu. This sorts the cargo items in the datagrid by their position height-

wise in the container in descending order.

 The mmuClearList_Click method is executed when a user selects Clear List from

the Actions menu. The method deletes all of the packed cargo items from the datagrid.

 The dgPackedCargo_Click method handles the event of the user selecting one of

the packed cargo items in the datagrid. This method displays the context menu so that

the user may delete the currently selected cargo item.

 The miDeleteCargoItem_Click method is called when a user selects Delete Cargo

Item from the context menu that is displayed by dgPackedCargo_Click. This method

deletes the currently selected cargo item from the packed cargo list.

 The PopulateDataGrid sub procedure reads the Cargo Manifest file and stores

each cargo item in an XML data object. The datagrid is then populated with all the cargo

items using the XML data objects.

 The GetItemCount function returns the value of the private intItemCount

property. This property contains the number of cargo items that were read into XML data

objects during the PopulateDataGrid sub procedure. Currently, this function is not used.

It is there for future expansion.

 The SetCargoManifestFileName sub procedure allows for the private

strPackedCargoFile property to be set. The property holds the file name of the Cargo

Manifest file.

 The GetCargoManifestFileName function returns the value of the private

strPackedCargoFile property.

www.manaraa.com

 37

 The SetContainerManifestFileName sub procedure allows for the private

strPackedContainerFile property to be set. The property holds the file name of the

Container Manifest file.

 The GetContainerManifestFileName function returns the value of the private

strPackedContainerFile property.

The XMLReader Class

+XMLReader()

-~XMLReader()

+FindCargo(in strCargoIDToFind : string) : bool

-AddCargoTag(in strCargoIDToFind : string) : string

-StripTags(in strItemToStrip : string, in strLeftTag : string, in strRightTag : string) : string

-FormatForLength(in strLengthWithTags : string)

-FormatForWidth(in strWidthWithTags : string)

-FormatForHeight(in strHeightWithTags : string)

-FormatForWeight(in strWeightWithTags : string)

+GetUnitID() : int

+GetCargoID() : string

+GetCargoLength() : double

-SetCargoLength(in dblNewLength : double)

+GetCargoHeight() : double

-SetCargoHeight(in dblNewHeight : double)

+GetCargoWidth() : double

-SetCargoWidth(in dblNewWidth : double)

+GetCargoWeight() : double

-SetCargoWeight(in dblNewWeight : double)

+LookupType(in strType : string)

-trCargoLookup : TextReader

-intUnitID : int

-strCargoID : string

-dblLength : double

-dblHeight : double

-dblWidth : double

-dblWeight : double

XMLReader

Figure 3.5 – The XMLReader Class

 The XMLReader class is used to find cargo items within the Cargo Lookup file.

XMLReader() and ~XMLReader() are a constructor and destructor, respectively. The

constructor is called by default when the class is instantiated and it currently performs no

tasks. The destructor closes any files it may have opened during execution.

www.manaraa.com

 38

 The FindCargo method reads through an open XML file line by line, searching for

a given Cargo ID. If the Cargo ID is found in the Cargo Lookup file, it pulls out all the

lines of data for that cargo item. The data is formatted using the Format sub procedures

within the XMLReader class. Once the data is formatted, the class properties are set.

They are intUnitID (if UnitID was turned on by the CPS), strCargoID, dblLength,

dblHeight, dblWidth, and dblWeight.

 The AddCargoTag function adds the proper XML tags to the Cargo ID from the

barcode scanner and returns it as a string. This allows for an easy comparison of the

current Cargo ID against any Cargo ID within the Cargo Lookup file.

 The StripTags function strips the desired tags from a line of an XML file. The

function returns the data between the tags as a string.

 The FormatForLength sub procedure calls the StripTags function and sets the

class property dblLength.

 The FormatForWidth sub procedure calls the StripTags function and sets the class

property dblWidth.

 The FormatForHeight sub procedure calls the StripTags function and sets the

class property dblHeight.

 The FormatForWeight sub procedure calls the StripTags function and sets the

class property dblWeight.

 The GetUnitID method returns the value of the private intUnitID property.

 The GetCargoID method returns the value of the private strCargoID property.

 The GetCargoLength method returns the value of the private dblLength property.

 The GetCargoHeight method returns the value of the private dblHeight property.

www.manaraa.com

 39

The GetCargoWidth method returns the value of the private dblWidth property.

The GetCargoWeight method returns the value of the private dblWeight property.

The LookupType method is used to set the type of look up to be performed, either

cargo or container. It then opens the appropriate XML file based on this choice.

Currently, only the cargo look up is performed. The container look up option is there for

the frmContainerType form in the event the cmbContainerType becomes a dynamic list

and the values are read from an XML file.

The XMLWriter Class

Figure 3.6 - The XMLWriter Class

 The XMLWriter class handles the creation of the XML file the CPS requires for

packing. XMLWriter () and ~XMLWriter () are a constructor and destructor,

respectively. The constructor is called by default when the class is instantiated and it

currently performs no tasks. The destructor closes any files it may have opened during

execution.

 The CreateFile method is used to create the file using the strFileName argument

as the name of the file. If the file was successfully created, it returns a Boolean true.

Otherwise, it returns a Boolean false.

www.manaraa.com

 40

 The WriteDeclaration method writes the appropriate XML header to the file.

 The WriteBeginRoot method writes the beginning outer most tag of the XML file.

 The WriteEndRoot method writes the ending outer most tag of the XML file.

 The WriteContainer method takes as input the name of the container and the

measurement units being used. These values are then written with the appropriate tags to

the XML file. This method should only be called once and immediately after the

WriteBeginRoot method was called.

 The WriteCargo method is used to write each cargo item to the XML file. It will

be called once for every cargo item in the scanned cargo list. It takes all of the cargo item

properties as input and writes them to the XML file with the appropriate tags.

 The Close method is called after the WriteEndRoot method is called. It is used to

close any open streams to the XML file.

www.manaraa.com

 41

CHAPTER 4

IMPLEMENTATION

 The development process that was primarily used consisted of coding a small

portion of the software at a time and testing that portion before moving on. In all of the

classes, a method or sub procedure was implemented and tested to ensure that it would

produce the correct results if given the correct input.

Coding began with the frmMain form. Since this was going to constitute a large

(and most difficult to code) portion of the software, it was appropriate to start with this

form. The frmMain form would handle the cargo item scanning and sending the files to

the CPS, and since the CPS had not been coded yet, writing the code to handle the

barcode scanning was done first. Once the necessary information was retrieved from the

barcodes, the XMLReader class was started.

 The first portion of code to be written for the XMLReader class was the

FindCargo method. While coding the FindCargo method, the AddCargoTags, StripTags,

and the formatting methods were created. These are all methods and sub procedures that

FindCargo uses to set the private class data members. After this portion was coded and

tested, the setters and getters were developed so that external classes could access the

private data members.

 Then work resumed on the frmMain form. Now that the software could access all

of the cargo items physical properties based on a Cargo ID, code to display this

information was created. After the display code was completed, testing of the interaction

of the frmMain form with the XMLReader class and the XMLReader class as a whole

was performed.

www.manaraa.com

 42

 Then, work began on the XMLWriter class. The author felt very proficient at

writing code that sent information to a file, therefore, most of the class was coded before

it was actually tested. The only method not coded was the WriteContainer method. The

frmMain form was then used to test the XMLWriter class.

 At this point, there was no way to get the container and measurement data from

the user. There was no room on the frmMain form to allow the user to make these

selections so the frmContainerType form was created. Setters and getters were added to

the frmMain form to allow frmContainerType to send the container type and

measurement data to frmMain. Since frmMain now knew this information, the

WriteContainer method for the XMLWriter class was written.

 Next, the code was created in frmMain that would establish the connection to the

server and send the XML file of packed cargo. After this was adequately tested, the code

for receiving files was written and tested.

 The one remaining step to code was the display of the Cargo Manifest file. The

frmCargoManifest form was created to perform this action. First, the sub procedure,

which reads in the data from the file and displays it, was written and tested. Then, the

code to sort the cargo items was written and tested.

www.manaraa.com

 43

CHAPTER 5

SOFTWARE TESTING

 Testing this software proved to be a difficult task. This was mainly due to the

software’s dependence upon the PocketPC hardware, namely the barcode scanner and the

wireless network card. Microsoft Visual Studio offers an emulator that mimics a

PocketPC platform and allows for PocketPC software to be tested on a desktop. This

emulator could not be used for testing the Cargo Scanner software. Whenever an attempt

was made to run the Cargo Scanner software using the PocketPC emulator, the emulator

would crash because it could not properly load the DLL files required by the barcode

scanner. To overcome this setback, most of the code was first written and tested on the

PC ignoring the barcode scanner hardware. Once the code worked properly on the PC, it

was then inserted in the PocketPC code, executed, and tested.

 As previously stated in the implementation portion of this paper, unit testing was

performed as each unit of code was finished and integration testing was performed as

completed classes were incorporated into the project. A majority of the testing focused

on three main areas of the software: scanning the cargo items, network transmission of

the files, and displaying the manifest cargo file.

 The scanning of cargo items underwent a great deal of unit and integration testing.

During unit testing, cargo items were scanned and the data object returned by the barcode

scanner was stored. The Cargo ID was then extracted from this data object and

displayed. When the Cargo ID was displayed, it was manually checked against the Cargo

ID that was displayed on the barcode label. Once the Cargo ID could be extracted

reliably, the XMLReader class was tested to make certain that it would return the

www.manaraa.com

 44

appropriate data when supplied a Cargo ID. When unit testing of the XMLReader class

was completed, it was then integrated with the barcode scanner and retested. After every

item was scanned, the data displayed on the screen by the XMLReader class was

manually checked against the Cargo Lookup file that the software was using to retrieve

the data.

 Testing the transmission of files over the network was the most difficult phase of

the entire project. Since the CPS was not completed at the time of the creation of the

Cargo Scanner software, it was not possible to test the actual transmission of files over

the network. However, an alternative means of testing was found. First, I created a

program to run on the PC that contains the PocketPC emulator. This program would

perform the sending and receiving of files that the CPS would eventually carry out. This

was accomplished by having the program create a TCP Socket and listen for a connection

request using the loopback IP address of the PC. This address is 127.0.0.1. When it

receives a request, it establishes the connection and begins receiving the XML file from

the Cargo Scanner software. Once the entire file is received, it then sends the Cargo and

Container manifest files to the Cargo Scanner and closes the connection.

 In order for the Cargo Scanner to communicate with the fake CPS program

running on the PC, it could not be executed from the PocketPC. The Cargo Scanner code

had to be written so it could run within the PocketPC emulator. This would allow the

Cargo Scanner software to access the PCs loopback address. Once the Cargo Scanner

could connect to the fake CPS, the ability to send and receive files was extensively tested.

This was done by examining each line of the file as it was sent and received by both the

Cargo Scanner and fake CPS. This was done to ensure that the data being sent was being

www.manaraa.com

 45

received per specifications. The resulting XML files were then compared to the originals

to make certain that no data was lost.

 The next set of testing was done on the ability to display the Cargo Manifest file.

This was done by supplying the frmCargoManifest form with a valid Cargo Manifest file.

Each cargo item and all its data from the Manifest File was displayed within the form.

All the data displayed on the form was manually checked against the XML file to make

sure the data was correct.

 The final step of testing was system testing. This was performed once the CPS

software was completed. To perform this task, the Cargo Scanner software was used as it

would be used in the real world. Several cargo items were scanned using the PocketPC

and the list of items was created and written to an XML file. The XML file was received

by the CPS and the CPS performed its operations. The CPS would then send the

resulting Cargo and Container manifest files to the Cargo Scanner. The Cargo Scanner

would then display the each cargo item from the manifest file on the screen. To test the

results, the Cargo and Container manifest files on the PocketPC were compared to the

same files on the server running the CPS.

It should be noted, the assumption was made that the files being sent by the CPS

were valid manifest files. The Container Packer software has been extensively tested in

the past so this was a safe assumption.

www.manaraa.com

 46

CHAPTER 6

SOFTWARE DEPLOYMENT

 Deploying the Cargo Scanner software is an easy and straightforward process.

After the code has been compiled, it must be built into a CAB file. This is done by

selecting Build, then Build Cab File from the main menu with Microsoft Visual Studio

2003. The CAB file will be on the hard drive of the PC so it must be transferred to the

PocketPC for installation. This is done by simply connecting the PocketPC to the PC via

USB or serial cable. Once connected, the PocketPC should act as an external drive of the

PC. It can be accessed through Microsoft ActiveSync Version 4.2 or through the My

Computer icon. Then, the CAB file need only be dragged from the ‘cab’ folder within

the Cargo Scanner project folder to any folder on the PocketPC. The CAB file will then

be copied to the PocketPC.

 Next, use the PocketPC to navigate to the location of the CAB file. To install the

Cargo Scanner software, double tap on the CAB file. The Cargo Scanner software will

be installed to the directory: “\Program Files\WirelessCargoScanner.”

 To begin using the Cargo Scanner software, select Programs from the Start

menu, then select Wireless Cargo Scanner. The Cargo Scanner software will start and

the Container Selection window will be displayed.

www.manaraa.com

 47

CHAPTER 7

PROJECT ASSESSMENT

Assessment

 This project was difficult in many respects. The most difficult part was managing

the project from start to finish. First, the required hardware and software had to be

identified and acquired. After two weeks of research, the list of what was needed and an

estimated cost to acquire the items was agreed upon by the author and Dr. Henry. Then,

the project had to be proposed to The Office of Research and Sponsored Projects in order

to acquire the necessary funding to buy the needed supplies. After the project was

approved, all the equipment was purchased from multiple websites. When the equipment

arrived, one of the items was not as it was advertised on the website. The item had to be

returned and a replacement shipped. This entire process spanned four months.

 Once the necessary equipment was obtained, development began. This stage of

the project had its share of challenges as well. Due to the incompatibilities between the

development environment and the target platform, a new development environment had

to be installed and many of the environment features, which would have made

programming much easier, were lost. This added three weeks to my development time.

The total time for development was two and a half months, bringing the total time to

complete the project to six and a half months.

 Many lessons were learned during this project. The first was learning how to deal

with other people and companies. People who are not directly involved in a project do

not seem to offer much help or consideration for their small involvement. Much time

was spent waiting for people to make decisions and allocate resources in order to get

www.manaraa.com

 48

started. More time was lost arguing with companies and waiting for them to fix their

mistakes.

 Even though these situations were very frustrating and time consuming, they

provided opportunities to learn about time management and performing tasks in parallel.

The first part of the development process is planning. Much more development was

possible in the first four months. This would include developing initial designs of the

user interface, determining what classes were needed and how they would interact with

each other, and determining if there is any pre-existing code that could have been used.

 More time should have been invested researching the equipment that would be

used. The operating system on the PocketPC was incompatible with the latest Visual

Studio development environment. Although all problems cannot be avoided, this one

could have been through a more diligent investigation into the specifications of the

PocketPC.

 C# was a language largely unfamiliar to the author and therefore was a concern as

the programming language for this project. It turned out to be a fantastic choice. C# was

very similar to C++ and VB.Net, which the author knows well. Because of this, coding

provided minimal difficulties.

Future Direction

 After three months of development, there is much that can still be done to

enhance and extend the Cargo Scanner software. One such enhancement would be the

ability of the software to dynamically find a server that is running the Container Packer

Service. Currently, the IP address and the port number of the server are hard coded into

the program.

www.manaraa.com

 49

 Another enhancement to the software would be the ability to save and open both

the scanned cargo lists and the cargo manifest lists. Saving the files would not require

much coding effort. Currently, the scanned cargo list is written over every time the pack

button is pressed. This is the only time the file is written. Save and Open options should

be added to the File menu on the Main window. This way, a user would be able to save

the scanned cargo list without pressing the Pack Cargo button. The user could also open

old scanned cargo lists at any time. The Save and Open options should also be added to

the Manifest window.

 Currently, the list of containers in the drop-down list on the Container Selection

window is a static list. The container names are hard coded into the program. It would

be a better idea for this to be a dynamic list. This could be done by having the CPS

software send the Cargo Scanner the file listing all the different containers. Once the

Cargo Scanner receives this file, it populates the drop-down list with the latest container

names. This allows for the list to be easily updated and only one file needs to be edited.

 Many features could be added to the Manifest window. It could be changed to

allow for more information to be displayed. Even though the Cargo Scanner receives the

Container Manifest file, it is currently not being utilized. It is possible that the Manifest

window could be arranged as a tabbed window. One tab could have the Cargo Manifest

list and the other tab could have all the information regarding the containers. A drop-

down list could contain the different Container IDs and when the user selects one, that

containers information would be displayed. This information would include the packed

weight, height, length, width, and the number of items within the container.

www.manaraa.com

 50

 Also, the number of cargo items in the Cargo Manifest list could be displayed

somewhere in this window. There is a property of the frmManifest class that keeps track

of this. Due to lack of space on the screen, it is not currently displayed anywhere.

 Another useful enhancement would be to display only between ten and twenty

items on the Cargo Manifest list at a time. The Cargo Manifest list can easily grow to

thousands of items. It is very difficult to use a vertical scrollbar in order to view that

many cargo items. It might not be a bad idea to have a button/buttons that allow the user

to view the list, several items at a time.

 It might also be beneficial to restructure the way items are removed from the

Cargo Manifest list. Rather than selecting an item from the list and selecting Delete from

the context menu, it may be faster for the user to just rescan the cargo item. This would

require that the barcode scanner be turned on once the Cargo Manifest list is loaded.

When a user scans an item, the list of cargo objects is searched for that item’s Cargo ID.

When the Cargo ID is found, the cargo object is removed from the list and the Manifest

window would be updated.

 Finally, it would be extremely beneficial to provide visualizations for packing the

cargo. Currently, the user must determine where each item goes based on the X, Y, Z

coordinates of the back left corner of the item. This would be a very difficult task. The

visualization for the Container Packer that runs on desktops uses more memory and

processing power than the PocketPC offers. A cargo visualization for the PocketPC

would have to be a stripped down version of the current one. Instead of displaying all

cargo items within the container, it might only show a few items at a time. Another

www.manaraa.com

 51

possibility is that the user selects a cargo item from the manifest list and a new window

appears with a display of where the item goes within the container.

www.manaraa.com

 52

References

Henry, Joel. Overview of an ActiveX Control that Performs Container Stuffing

.NET 2005 Version. February, 2006.

www.manaraa.com

 53

Appendix A

Example Cargo Lookup File

<?xml version="1.0" encoding="utf-8" ?>

<Lookup>

 <Cargo>

 <UnitID>123456</UnitID>

 <CargoID>J2B|3UM77|44|75</CargoID>

 <Length>3.875</Length>

 <Width>2.625</Width>

 <Height>1.375</Height>

 <Weight>37</Weight>

 </Cargo>

 <Cargo>

 <UnitID>123456</UnitID>

 <CargoID>J2B|3UM77|43|74</CargoID>

 <Length>15.875</Length>

 <Width>4.625</Width>

 <Height>4.375</Height>

 <Weight>37</Weight>

 </Cargo>

 <Cargo>

 <UnitID>123456</UnitID>

 <CargoID>J2B|3UM77|42|73</CargoID>

 <Length>45.214</Length>

 <Width>9.625</Width>

 <Height>11.859</Height>

 <Weight>37</Weight>

 </Cargo>

 <Cargo>

 <UnitID>123456</UnitID>

 <CargoID>191050</CargoID>

 <Length>15.875</Length>

 <Width>9.625</Width>

 <Height>9.375</Height>

 <Weight>1.23</Weight>

 </Cargo>

 <Cargo>

 <UnitID>123456</UnitID>

 <CargoID>192564</CargoID>

 <Length>15.875</Length>

 <Width>9.625</Width>

 <Height>9.375</Height>

 <Weight>37</Weight>

 </Cargo>

 <Cargo>

 <UnitID>123456</UnitID>

 <CargoID>192565</CargoID>

 <Length>15.875</Length>

 <Width>9.625</Width>

 <Height>9.375</Height>

 <Weight>37</Weight>

 </Cargo>

</Lookup>

www.manaraa.com

 54

Appendix B

Example Cargo Item File

<?xml version="1.0" encoding="utf-8" ?>

<movementplan>

<Containers>

<ContainerName>8x9.5x40Ft.ISO</ContainerName>

<MeasurementUnits>imperial</MeasurementUnits>

</Containers>

<Cargo>

<UnitID>123456</UnitID>

<CargoID>192564</CargoID>

<Length>15.875</Length>

<Width>10</Width>

<Heigth>9</Heigth>

<Weight>37</Weight>

</Cargo>

<Cargo>

<UnitID>123456</UnitID>

<CargoID>192565</CargoID>

<Length>15.875</Length>

<Width>10</Width>

<Heigth>9</Heigth>

<Weight>37</Weight>

</Cargo>

<Cargo>

<UnitID>123456</UnitID>

<CargoID>192567</CargoID>

<Length>13.65</Length>

<Width>10</Width>

<Heigth>4</Heigth>

<Weight>25</Weight>

</Cargo>

<Cargo>

<UnitID>123456</UnitID>

<CargoID>109528</CargoID>

<Length>12.7</Length>

<Width>4</Width>

<Heigth>11</Heigth>

<Weight>65</Weight>

</Cargo>

</movementplan>

	The Creation of Cargo Scanner Software to Improve the Container Packing Process
	Let us know how access to this document benefits you.
	Recommended Citation

	Microsoft Word - Project Writeup.doc

